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Why Game Theory?

Goal of TCS (1950-2000)?
Develop a mathematical understanding of the
capabilities and limitations of the von Neumann
computer and its software −− the dominant and
most novel computational artifacts of that time

Today?
Internet has surpassed the von Neumann computer
as the most complex computational artifact of our
time [Papadimitriou 2001]

But:
Internet is built, operated and used by a multitude of
diverse (possibly conflicting) economic interests −−
theoretical understanding urgently needed tools

For example:
Of which game is the TCP/IP protocol a stable state?

Paul Spirakis, RACTI June 21-23, 2004 – p.2/54



Game Theory vs TCS

Game Theory
A general theory studying the behavior of rational
players.

Implicit use of Game Theory in TCS
X Proving algorithmic bounds

X Online algorithms

X Learning

X Adversaries

X PSPACE
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Non-cooperative Games

Strategic Game: (N,(Πi)i∈N ,(Ui)i∈N) where ∀i ∈ N,
Ui : ×i∈NΠi 7→ IR is user i’s utility function.

Pure Strategies:Each user i chooses an action from its
action set action set Πi with certainty.

Mixed Strategies: Each user i chooses a probability
distribution over its action set Πi.

N,Πi are considered to be finite here.

Paul Spirakis, RACTI June 21-23, 2004 – p.4/54



What is a Rational Behavior in a Game?

Nash Equilibrium: A combination of strategies for the users so
that no user has the incentive to change unilaterally its own
strategy [Nash, 1951] ⇒ ALWAYS EXISTS!

Problems:

A Pure NE may not exist ⇒ DECIDABILITY

A mixed NE always exists ⇒ COMPUTABILITY (∈ P?)

Many NE may exist ⇒ WHICH IS BEST?
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Price of Anarchy

Approximation ratio: Price for not having exponential
resources.

Competitive ratio: Price for not knowing the future.

Coordination ratio: Price for not having coordination (due to
selfish players) – also called price of anarchy.
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Price of Anarchy (contd.)

[Koutsoupias, Papadimitriou, 1999]

R = social cost of Worst NE
optimum cost

Social Cost = a global (system) measure of performance (eg,
max delay in traffic).

R ≥ 1

Paul Spirakis, RACTI June 21-23, 2004 – p.7/54



Congestion Games

[Rosenthal 1973, Monderer & Shapley 1996]

A set E of shared resources.

A set N of non-cooperative players with identical demands
(∀i ∈ N, wi = 1).

∀i ∈ N, Πi ⊆ 2E \ /0 is the set of allowable actions for player i
(action = a non-empty collection of resources).

Each resource e ∈ E has a non-decreasing delay function
de : IR+ 7→ IR+, depending only on the cumulative congestion
(ie, #players using the same resource).
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Congestion Games (contd.)

Wrt to a given pure strategies profile ϖ ∈ ×i∈NΠi, the selfish
cost of player i taking action ϖi ∈ Πi is:

λi(ϖ) = λϖi(ϖ) = ∑e∈ϖi
de(θe(ϖ))

where,

Λe(ϖ) ≡ {i ∈ N : e ∈ ϖi}

is the set of players using resource e according to ϖ, and

θe(ϖ) ≡ ∑i∈Λe(ϖ) wi

is the total load on resource e wrt ϖ.
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Congestion Games (contd.)

ϖ−i: a configuration of all players except i.

p−i: the mixed strategies profile of all players except i.

ϖ−i ⊕ϖi: the new configuration with player i choosing the pure
strategy ϖi.

P [A]: the probability of event A occurring.

P(p,ϖ) = ∏i∈N pi(ϖi): the probability of configuration ϖ
occurring, when the players adopt the mixed profile p.
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Congestion Games (contd.)

Wrt to a given mixed strategies profile p, the selfish cost of
player i taking action ϖi ∈ Πi is the expectation of the
respective random variable [von Neumann & Morgenstern 1944]:

λi
ϖi

(p) = ∑ϖ−i∈Π−i P(p−i,ϖ−i) ·∑e∈ϖi
de

(

θe(ϖ−i ⊕ϖi)
)

Social Cost of a mixed strategies profile p:

SC(p) = ∑ϖ∈Π P(p,ϖ) ·maxi∈N{λϖi(ϖ)}

Social Optimum: OPT = minϖ∈Π {maxi∈N [λϖi(ϖ)]}

NOTE: maxi∈N may be replaced by some other computable
function of N.

Price of Anarchy: R = maxp is a NE

{

SC(p)
OPT

}
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Categories of Congestion Games

A congestion game is...

symmetric, if all players are indistinguishable (ie, have the
same action set and the same utility function).

a (multi-commodity) network congestion game, if for each
user i, its allowable actions are (si, ti)-paths in the graph of the
resources.

a single-commodity network congestion game if all allowable
actions of the players are (s, t)-paths in the graph of
resources.
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Potential Games

[Monderer & Shapley 1996]

Γ = (Πi, Ui : Π 7→ IR)i∈N : A strategic game, where Π ≡×i=1Πi

is the set of possible pure strategies profiles.

Neighboring Pure Profiles: ∀ϖ ∈ Π, ∀i ∈ N, ∀zi ∈ Π\{ϖi},

ϖ−i ⊕ zi ≡ (ϖ1,ϖ2, . . . ,ϖi−1,zi,ϖi+1, . . . ,ϖn)

ϖ and ϖ−i ⊕ zi are neighboring pure profiles.
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Potential Games (contd.)

For the given game Γ, a function Φ : Π 7→ IR is

an ordinal potential iff ∀i ∈ N,∀ϖ ∈ Π,∀zi ∈ Πi,

Ui(ϖ)−Ui(ϖ−i ⊕ zi) > 0 ⇔ Φ(ϖ)−Φ(ϖ−i ⊕ zi) > 0

a b-potential, iff ∀i ∈ N,∀ϖ ∈ Π,∀zi ∈ Πi,

Ui(ϖ)−Ui(ϖ−i ⊕ zi) = bi ·
(

Φ(ϖ)−Φ(ϖ−i ⊕ zi)
)

an exact potential, iff it is a 1-potential.
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Properties of Potential Games

[Monderer & Shapley 1996]:

A path in Π is a sequence of configurations γ = 〈ϖ(0),ϖ(1), . . .〉
such that ∀k ≥ 1 there exists a unique player ik such that
ϖ(k) = ϖ(k−1)−i ⊕πi for some action πi ∈ Πi \{ϖ(k−1)i}.

γ is an improvement path if ∀k ≥ 1, Ui(ϖ(k)) > Ui(ϖ(k−1))
where ik is the unique deviator at step k.

Definition 1 A game has the Finite Improvement Property (FIP) if
every improvement path has finite length.
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Properties of Potential Games (contd.)

Theorem 2 [Monderer & Shapley 1996]
Every finite ordinal potential game has the Finite Improvement
Property.

Corollary 3 Every finite ordinal potential game has at least one
Pure Nash Equilibrium.
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Properties of Potential Games (contd.)

Fictitious Play: When the best response dynamics converges,
starting from arbitrary mixed strategies profile.

Theorem 4 Every finite b-potential game has the Fictitious Play
property.
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The Potential/Congestion Theorem

Main Theorem 5 [Monderer & Shapley 1996]

(a) Every congestion game is an exact potential game.

(b) Every (finite) potential game is isomorphic to a congestion
game.
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Change of Utilities of Deviators in Closed Paths

For a finite path γ = 〈ϖ(0), . . . ,ϖ(k)〉 and a collection
U = {Ui}i∈N of utility functions, define

I(γ,U) = ∑k
r=1 [Uir(ϖ(r))−Uir(ϖ(r−1))]

where ∀r ∈ [k], ik is the unique deviator at step r.

Theorem 6 Let Γ be a game in strategic form. The following are
equivalent:

(1) Γ is an exact potential game.

(2) I(γ,U) = 0 for every finite simple closed path γ of length 4.
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From this point on, the results are of

[Fotakis, Kontogiannis, Spirakis 2004]

in ICALP 2004 and DELIS SP4/FET/EU
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Weighted Congestion Games

[Fotakis, Kontogiannis, Spirakis 2004]

Each player i has a non-negative weight wi (traffic demand).
The weights are non-identical:

w = (wi)i∈N ∈ IR|N|
≥0

Total load on resource e:

θe(ϖ) = ∑i∈Λe(ϖ) wi
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Some Notation

Meaning:
(A) r possible values of total load may appear in resource

e ∈ E. For the kth smallest load, the delay of e is ak.

(B) A continuous function de(x) determines the delay of
resource e as a function of its load.

Resource Delay Functions:
In general, non-decreasing functions of loads.
Special cases: Linear delays and two-wise linear delays
(ie, maximum of two linear functions).
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Layered Networks

All players want to route traffic from a unique source s to a
unique destination t (single-commodity network).

All the nodes of the network lie on an (s, t)-path.

Edges (representing shared resources) can only exist
between nodes of consecutive layers.

Each (s, t)-path in the network has length exactly L.
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∃ PNEs in Weighted Congestion Games?

What we know:

Theorem 7 [Rosenthal 1973]
Any (unweighted) congestion game has at least one Pure Nash
Equilibrium.
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Our Result

Theorem 8 [Fotakis, Kontogiannis, Spirakis 2004]
Even a 3-layered network weighted congestion game with 2-wise
linear resource delays may have no PNE.

Proof:

∃ 4-cycle 〈(P3,P2),(P3,P4),(P1,P4),(P1,P2),(P3,P2)〉 in the
Best Response Dynamics graph of the game.

Any pure strategies profile out of this cycle is either one or two
best-response moves away from some of its configurations.
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Exact Potentials for Weighted Congestion Games?

What we know:

Theorem 9 [Rosenthal 1973]
Every (unweighted) congestion game admits an exact potential.
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Our Result

Theorem 10 [Fotakis, Kontogiannis, Spirakis 2004]
Even a single commodity network congestion game with resource
delays equal to the congestions may not have an exact potential.

Proof:

Cycle = a sequence of pure strategies profiles
γ = 〈ϖ(0), . . . ,ϖ(r) = ϖ(0)〉, where ∀k, ik is the unique player in
which ϖ(k) and ϖ(k−1) differ.

[Monderer & Shapley 1996]: Let
I(γ) = ∑r

k=1

[

λik(ϖ(k))−λik(ϖ(k−1))
]

. A game admits an exact
potential iff any 4-cycle γ has I(γ) = 0.

The 4-cycle γ = (ϖ, ϖ−1 ⊕π1, ϖ−1,2 ⊕{π1,π2}, ϖ−2 ⊕π2, ϖ)
has I = (w1 −w2) ·NETWORK CONSTANT and is typically
non-zero.
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The Dynamics Graph

Definition 11 The Dynamics Graph of a game Γ is a directed
graph whose

vertices are configurations of the players, and

∀ϖ ∈ Π, ∀i ∈ N, ∀πi ∈ Πi \{ϖi}, there is an arc from ϖ to
ϖ−i ⊕πi iff

λi(ϖ) > λi(ϖ−i ⊕πi)
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Construction of a PNE in Congestion Games?

What we know:

Theorem 12 [Fabrikant, Papadimitriou, Talwar 2004]

There is a polynomial time algorithm for finding a Pure Nash
Equilibrium in symmetric network congestion games.

It is PLS-complete to find a Pure Nash Equilibrium even for
asymmetric network congestion games.
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Our Result

Theorem 13 [Fotakis, Kontogiannis, Spirakis 2004]
For any weighted L-layered network congestion game with
resource delays equal to their congestions, at least one PNE exists
and can be constructed in time 1

2 |E|W
2
tot.

Proof:

Φ(ϖ) = ∑e∈E [θe(ϖ)]2 is a
(

1
2wi

)

i∈N
-potential for the game.

Wlog assume that players have integer weights.

Each arc in the Dynamics Graph decreases the potential by at
least at least 2wmin ≥ 2.

⇒ Any improvement path has length at most 1
2 |E|W

2
tot.
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An Improvement

For any weighted congestion on an arbitrary multi-commodity
network whose resource delays are linear functions of their loads
(ie, ∀e ∈ E, de(x) = ae · x+be), we can construct a Pure Nash
Equilibrium in pseudo-polynomial time.

[Fotakis, Kontogiannis, Spirakis 2004]
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What about the Price of Anarchy?

The price of anarchy can be unbounded,
even in unweighted layered network con-
gestion games with linear resource delays.
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Anarchy of Network Congestion Games

Example of [Roughgarden, Tardos 2000] for atomic flows (can easily be
transformed into a 3-layered network congestion game):

Identical users.

Constant and M/M/1-like resource delays.

OPT:(svt, swt)

NASH: (st, svwt)

R = 1+ε
(2+ε)·ε
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Anarchy of Layered Networks with Linear Delays

Identical players.

Linear resource delays.

a � b � 1 ≥ c ≥ 0.

OPT:(sABt,sCDt)

NASH: (sADt, sCBt)

R = 2+b
2+c
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What Remains?

We seek for

(I) the price of anarchy of layered-network weighted congestion
games with resource delays proportional to their loads, or

(II) the price of anarchy of unweighted congestion games on
general single-commodity networks.
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(I) Unit-Weight Players

Delays proportional to resource loads:

∀e ∈ E, de(x) = ae · x : ae ≥ 0

General (single-commodity) network.

m = #edges.
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The Network G = (V,E)

P: the set of all (simple) paths from the unique source s ∈V to
the unique destination t ∈V .

∀e ∈ E, de(x) = ae · x : ae ≥ 0

m = |E|

∀π ∈ P, aπ ≡ ∑e∈π ae

Feasible Flow: A function ρ : P 7→ IR≥0 s.t. ∑π∈P ρ(π) = n
(all player demands are met)

NOTE: n is both the number of players and the total demand
that has to be routed from s to t.
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Flows on G

Unsplittable Flow: Each player’s demand is routed via a
unique s-t path.

Splittable Flow: The demand of each player can be split over
several s-t paths.
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Mapping Mixed Profiles to Flows

p = (p1, . . . , pn) is an arbitrary mixed strategies profile.

We map p to the (splittable) flow ρp which is defined as
follows:

∀π ∈ P, ρp(π) = ∑i∈[n] pi(π)

(ie, the expected load travelling along π is viewed as a
splittable flow on this path).

NOTE: If p is a pure strategies profile then the corresponding
flow is unsplittable.
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Flow Latencies vs Expected Delays

The expected delay of resource e ∈ E wrt the profile p is

θe(p) ≡ ae ·∑i∈[n] ∑π3e pi(π) = ae ·ρp(e) ≡ θe(ρp)

(ie, the expected delay of a resource wrt to a mixed profile is
equal to the latency caused by the corresponding flow).

⇒ θπ(p) = ∑e∈π θe(p) = θπ(ρp)

(ie, the expected delay along a path wrt to a mixed profile is
equal to the total latency on this path caused by the
corresponding flow).

Maximum Latency of a flow ρ = ρp:

L(ρ) ≡ maxπ:ρ(π)>0 {θπ(ρ)} = maxπ:∃i∈[n],pi(π)>0{θπ(p)} ≡ L(p)

(ie, the maximum latency caused by the flow ρ = ρp is equal to
the maximum expected delay paid by the users wrt to the
mixed strategies profile p).
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Alternative Measures of Flows

Total Latency:

C(ρ) ≡ ∑π∈P ρ(π)θπ(ρ) = ∑e∈E aeρ2(e) ≡C(p)

Total Load:

W (ρ) ≡ ∑e∈E aeρ2(e) = ∑π∈P aπρ(π) ≡W (p)

For any feasible flow ρ let
a(ρ) ≡ maxπ:ρ(π)>0{aπ} and

dmin(ρ) ≡ minπ∈P{θπ(ρ)+aπ}
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Flows at Nash Equilibrium

p: an arbitrary mixed strategies profile and ρp is the
corresponding flow.

The (exprected) cost of player i ∈ [n] for using path π ∈ P is

λi
π(p) = θ−i

π (p)+aπ

where θ−i
π (p) = θπ(p)−∑π′∈P Q[π,π′]pi(π′) is the expected

delay along path π caused by all players except for player i.

Definition 14 The flow ρ = ρp is at Nash equilibrium iff the
corresponding mixed profile p is at Nash equilibrium.

Proposition 15 If ρ is a Nash flow then ∀π ∈ P : ρ(π) > 0,

max{θπ(ρ),aπ} ≤ dmin(ρ) ≡ minπ′∈P{θπ′(ρ)+aπ′}
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Notation

∀π,π′ ∈ P, Q[π,π′] ≡ ∑e∈π
⋂

π′ ae (a |P|× |P| symmetric matrix).

C(ρ) = ρT Qρ = ∑e∈E aeρ2(e) ≥ 0, ∀ρ ∈ IR|P|

⇒ Q is a positive semidefinite matrix.

∀π ∈ P, A[π] ≡ aπ = ∑e∈π ae

W(ρ) = AT ρ, ∀ρ.
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A Useful Quadratic Program

Proposition 16 Let ρ be a Nash flow. Then, ∀a ∈ [0,1],
aC(ρ)+(1−a)W(ρ) ≤ ndmin(ρ).

Definition 17 Let ρ̂ be the optimal (splittable) flow of the following
quadratic program:

(QP1) min
{

n−1
2n ρT Qρ+AT ρ : 1T ρ ≥ n; ρ ≥ 0

}

Remark 18 Here n denotes both the #players and the total traffic
demand.
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A Mixed Nash Equilibrium

Proposition 19 Let p be a mixed strategies profile where every
player i ∈ [n] routes its traffic on each path π ∈ P with probability

pi =
ρ̂(π)

n . Then p is a Nash Equilibrium.

Paul Spirakis, RACTI June 21-23, 2004 – p.45/54



Yet Another Quadratic Program

Definition 20 Let ρ̄ be the optimal (splittable) flow of the following
quadratic program:

(QP2) min
{

ρT
(

1
2Q

)

ρ+AT ρ : 1T ρ ≥ n; ρ ≥ 0
}

Remark 21 Due to optimality of ρ̄, it holds that ∑π∈P ρ̄(π) = n.

Lemma 22 For any feasible flow ρ corresponding to a mixed
strategies profile at Nash equilibrium,

C(ρ)+W (ρ) ≤ 4
[

1
2C(ρ̄)+W(ρ̄)

]

.

Proof: Using Dorn’s Theorem on strong duality of Quadratic pro-

grams.
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Nash Flows vs Optimal Unsplittable Flow

Lemma 23 Let ρ∗ be the optimal unsplittable flow wrt the
maximum latency objective. Then,

1
2C(ρ̄)+W (ρ̄) ≤ 3

2C(ρ∗)

Main Lemma 24 For any feasible flow ρ corresponding to a mixed
strategies Nash equilibrium,

max{L(ρ),a(ρ)} ≤ 6L(ρ∗)

Proof: By contradiction.

Price of Anarchy: R = maxp is a NE
SC(p)
L(ρ∗)
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Statistical Conflict

Lemma 25 Let

ρ∗: the optimal unsplittable flow wrt the max-latency objective.

ρ = ρp: the feasible flow corresponding to a mixed strategies
profile p.

Assume that there is some constant β ≥ 1 s.t.
max{L(ρ),a(ρ)} ≤ β ·L(ρ∗). Then,

SC(p) ≤ 2β ·O
(

lnn
ln lnm

)

·L(ρ∗)
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Proof Sketch

Xe: the r.v. for the actual delay on edge e ∈ E.

Hoeffding bound:

P [Xe ≥ ek max{θe(ρ),ae}] ≤ k−ek

Xπ ≡ ∑e∈π Xe: the r.v. for the actual delay on path π ∈ P.

Use the following facts:

SC(p) ≤ E
[

maxπ:ρ(π)>0{Xπ}
]

P [maxπ∈P{Xπ} ≥ 2eβkL(ρ∗)] ≤ mk−ek
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The Bound on the Price of Anarchy

By lemmas 24 and 25 we conclude that

R ≤ 24e
(

lnm
ln lnm +1

)

Paul Spirakis, RACTI June 21-23, 2004 – p.50/54



(II) Different Demands on Layered Networks

Players have distinct weights.

ρ : P 7→ IR≥0 is a feasible flow if ∑π∈P ρ(π) = Wtotal = ∑i∈[n] wi.

Mapping of (feasible) flows to mixed strategies profiles p:

∀π ∈ P, ρp(π) = ∑i∈[n] wi · pi(π).

For a Nash flow ρ, and the optimum unsplittable flow ρ∗ wrt
the max-latency objective,

L(ρ) ≤ 3 ·L(ρ∗)

(again use Dorn’s theorem).
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Anarchy of Weighted Layered Network Games

For weighted congestion games on L-layered networks, the price of
anarchy is

R ≤ 8e
(

lnm
ln lnm +1

)
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A Simplified Quadratic Program

The quadratic program we used in this case is

(QP3) min
{

ρT Qρ : 1T ρ ≥Wtotal; ρ ≥ 0
}

and its dual is

(DP3) max
{

z ·Wtotal −ρT Qρ : 2Qρ ≥ 1z;z ≥ 0
}

from which (using Dorn’s strong duality theorem) we get that

L(ρ) ≤ 3 ·L(ρ∗)
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Open Problems

Weighted users and general network?

Multicommodity congestion games?

Polynomial time algorithm for construction of Pure Nash
Equilibria (or PLS-Complete)?

Thank you!
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